HNDM~1110-1-2

CHAPTER V

STRUCTURAL DESIGN AND ANALYSIS

5.1 INTRODUCTION

The design and analysis of structural components sub-
jected to dynamic loads differs from conventional static de-
sign procedures in that the time varying characteristics of
the loading and the inertial characteristics of the struc-
ture must be considered. Following paragraphs of this chap-
ter describe techniques which are sufficiently accurate for
preliminary designs in all cases, and in most cases, adequate
for final designs. These methods deal primarily with the

dynamic loadings imposed by internal explosions.

The type of operation and the expldsive size and char-
acteristic to be contained within the suppressive shield dic-
tate configuration and dimensions for the structure. With
the explosive data and structural dimensions established, the
internal airblast environment and fragment hazard can be de-
fined using the procedures presented in Chapter 3. Safety
criteria determine the allowable venting ratio. The inter-
nal airblast pressures determine the strength of structural
elements and the fragment weights and velocities often determine

the minimum thickness of these elements.

Structural design to resist dynamic loads is an itera-
tive procedure. After an explosive environment is defined
for a suppressive shield element, a trial structural section
is selected to perform the first design calculation. If re-
quired by the first design calculation, the trial section is
modified and used as the trial section for the second design
calculation. The process is repeated until the resistance
of the selected section is egual to or slightly greater than
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the required resistance. Very seldom are more than three
iterations needed.

On the other hand structural analysis of existing struc-
tures does not always require iterations. A closed form
solution is used to obtain structural deformation or ductil-.
ity ratios for a specified loading. If the objective of the
analysis is to determine the maximum explosive charée an
existing structure can withstand, an iterative process is

still required.

Before proceeding with either design or analysis dis-
cussed above, a decision must have been made as to what dam-
age to the structure is acceptable. Damages are measured
by ductility ratios. Chapter 4 defines, discusses and recom-
mends acceptable ductility ratios. If the recommended duc-
tility ratios are used, the safety criteria for containment
of airblast, fragments, and fireball will bé met.
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5.2 STRUCTURAL RESISTANCE

As noted in Chapter 4, most suppressive shield structural
elements are designed under the assumption that some inelastic
response is acceptable and desirable. For these elements, the
displacement-resistance function is nonlinear and is assumed to
be represented by one of the idealized functions shown in Fig.
5-1. Resistance is proportional to displacement up to the point
of yielding. Beyond the point of yielding, the resistance of
the element may increase, remain constant or even decrease. An
increase in resistance may result from strain hardening of the
material or the development of membrane action in the element.

A decaying resistance might be the result of local buckling or
axial compressive loads on the element. This type of resistance-
displacement function is undesirable and can normally be avoided
by proper design of the structural system. Neglect of strain
hardening or membrane action results in a more conservative de-
sign; however, it is often difficult to ascertain exactly how
much benefit might accrue from these effects. The elastic-plas-.
tic resistance functions used in this handbook neglect any en-
hancement or degradation of structure resistance from the above

+ . .
effects. Strain Hardening
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Figure 5-1. 1Idealized Resistance Functions

5-3



HNDM-1110-1-2

For elastic-plastic systems, the response is elastic up to
the elastic limit Xe' The resistance then remains constant over
the displacement range, X < X < X, where X is the maximum dis-
placement. As the displacement starts to decrease, the response

or rebound is again assumed to be elastic.

The resistance functions shown in Fig. 5-1 are representa-
tive of the idealized elastic-plastic behavior of statically de-
terminate structures such as a simple beam. That is, as the
load (assumed uniform) is increased on the beam, the displace-
ment at midspan increases to some value Xe at which point the
moment capacity of the beam has been reached and a plastic hinge
forms at midspan. Assuming perfectly plastic behavior, the dis-
placement can now increase indefinitely with no further increése
in load.

Statically indeterminate structures possess additional load
carrying capacity beyond formation of the first plastic hinge(s).
A uniformly loaded beam with both ends fixed would have a resis-
tance function similar to that shown in Fig. 5-2. As the load
increases, the moments at the fixed supports increase until the
plastic moment capacity of the beam is reached and plastic hinges
form. This portion of the resistance function is that shown in
Fig. 5-2 as zero to 1.

Although the beam section has yielded and plastic hinges
have formed at the fixed supports, the member is still capable
of supporting increased load as a simple beam. This portion of
the resistance function is that from 1 to 2 in Fig. 5-2. Point
2 represents the formation of a plastic hinge at midspan which |
converts the beam into a mechanism theoretically capable of in-
creasing deflection without limit with no increase in load.

It is frequently found convenient in the accomplishment of
simplified dynamic analyses to replace the bilinear curve 0-1-2
in Fig. 5-2 with the single line 0-~3. This equivalent resist-

ance function can be constructed by equating the areas under the
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actual and equivalent curves. The equivalent deflection X

g can
be found by
Xg = X, + Xp(l - Re/Rm) (5-1)
and the equivalent stiffness Kj of the system by
Ko = R /Xp (5-2)
<::——— Equivalent Resistance Function
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Figure 5-2. Idealized Resistance Function for Uniform
Loaded Fixed End Beam

The curves shown in Fig. 5-2 are elastic-perfectly plastic,
i.e., they contain elastic portions with a linear relationship
between load and deflection and perfectly plastic portions where
indefinite deflection is possible at constant load. When very
large deflections (strains) are considered, the elastic portion
of the resistance can be neglected and the behavior considered
to be rigid-plastic (i.e., the resistance function could be

taken as a horizontal line with ordinate Rm) with little error.
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5.3 PROPERTIES OF STRUCTURAIL ELEMENTS
5.3.1 General

The design or analysis of structures and structural
elements to resist dynamic loads requires a determination of the
static load carrying capacity of the element. A dynamic analy-
sis is performed to obtain a required static resistance or to
translate a given static resistance into one under dynamically
applied loads. This section presents conventional expressions
for the flexural, shear and axial load capacity of steel and re-
inforced concrete elements. These expressions are utilized in
paragraph 5.4 to obtain the resistances of beams and slabs with
various end conditions and span ratios. Also presented are ex-
pressions for the load capacity of cylindrical and spherical
pressure vessels. As noted in Chapter 4, dynamic tensile or
compressive strengths should be used to 6btain the strength of

elements subjected to dynamic loadings.

The design or analysis of structural members for
suppressive shields will almost always be based upon inelastic
behavior of the member. For steel, the design procedure is re-
ferred to as plastic design; for concrete, it is ultimate'
strength design. These methods assume both ultimate strength
behavior (plastic moments) and the redistribution of load due to
formation of plastic hinges.

5.3.2 Structural Steel Elements

In designing or analyzing the ability of steel mem-
bers to resist blast effects, many of the concepts and equations
developed for the plastic analysis of steel structures under
static loads are used. A number of references (such as Refs.
5-1 and 5-2) contain discussions of plastic analysis and design
of steel structures for static loads and can be consulted for

more detailed guidance.
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a. Flexure

If a steel member is subjected to pure bending,

its ultimate moment capacity is given by

Mp = fdyz (5-3)

is
dy
the dynamic yield strength of the steel. Reference 5-2 includes

where Z is the plastic section modulus of the member and f

plastic section modulus tables for common structural steel sec-
tions, and Fig. 5-3 gives general expressions for the plastic
section modulus of several structural shapes for bending about

a horizontal centroidal axis.

Equation 5-3 assumes that the member is properly
supported and proportioned so as to allow development of a plas-
tic hinge at critical sections. If the member is not properly
supported or proportioned, buckling may occur before the fully
plastic moment can be developed. To ensure the ability of a
steel member to sustain fully plastic hinge formation, it is
necessary that the member be properly braced to prevent lateral-
torsional buckling and that the elements of the member meet mini-
mum thickness requirements for initial loading and rebound (see
Ref. 5-3). Table 5-1 gives maximum width-thickness ratios for
flanges of rolled, wide-flange shapes and similar built-up
single-web éhapes that are subjected to compression involving

hinge rotation under ultimate loading.
b. Shear

" Shear is of interest in steel members primarily
because of its possible influence on the plastic moment capac-
ity of the member. It has been found experimentally that the
member will achieve its full plastic moment capacity if the aver-
age shear stress over the full web area is less than the yield
stress in shear (Ref. 5-1).

From Ref. 5-2, the shear capacity of WF or I~
shaped steel sections with unstiffened webs is given by

5-7
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Table 5-1

MAXIMUM THICKNESS RATIOS FOR STEEL MEMBERS (Ref. 5-2)

fy' ksi b/2tf dw/tw
36 8.5 43
42 8.0 40
45 7.4 38
50 7.0 36
55 6.6 35
60 | 6.3 33
65 6.0 32

b = width of flange; tf§ = thickness of
flange (if thickness of flange varies,
use average thickness); d,, = depth of
web; t, = thickness of web.

5-10
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Vu = 0.55fdytwt (5-4)
where
Vu = ultimate shear capacity
t, = web thickness
t = total depth of member

When the web of a built-up section is designed
to carry a significant part of the total moment requirement of
the section, the shear influence cannot be neglected and the
member should be investigated for possible moment capacity loss
through shear yield. Reference 5-3 recommends that the moment

capacity of such a section be defined by

twdw /v 2
MP bfdytfdw l1 + 0.25 _t—f-l_b_ - (v‘;) (5-5)

where
b = flange width
tf = flange thickness
dw = depth of web = t - th
V = total shear acting on section
VY = 0,55fdytwdw = shear capacity of web

c. Axial lLoads

Due to the nature of suppressive shield struc-
tural configurations (i.e., loaded from the interior such as
pressure vessels), compressive axial loads will rarely, if ever,
be a consideration. Even with those configurations that utilize
columns, such columns properly proportioned for the rated blast
loads will almost certainly be adequate for the normal static
service loads and rebound loads. Such adequacy can be readily
verified by the procedures presented in Refs. 5-1 and 5-2.
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Tensile axial loads can also reduce the moment
capacity of steel members. However, columns and roof beams pro-
portioned for moment due to blast loads by the methods of this
handbook are not expected to experience any significant reduc-
tion in load-carrying capability due to combined tensile and
flexural forces. Reference 5-1 or 5-3 is recommended should the
occasion arise to investigate the effects of combined axial and

flexural forces on steel members.

5.3.3 Reinforced Concrete Elements

The only reinforced concrete structural elements of
potential interest for suppressive shields are beams and slabs
(plates). These elements may be utilized for suppressive shield
foundations or roof slabs. The use of reinforced concrete in
cyliadrical and sperical structural configurations is not rec-

ommended for suppressive shielding applications.

Ultimate strength design methods are used for rein-
forced concrete elements, and a properly designed and propor-
tioned reinforced concrete member is theoretically as ductile in
flexure as a structural steel member. If reinforced concrete
members are used, they should be Type I construction as defined

in Chapter 4.
a. Flexure

The flexural mode of response is heavily depen-
dent upon the percentage of tensile steel employed. If insuffi-
cient steel is used, the steel may be incapable of resisting the
tensile force carried by the concrete before cracking. If, on
the other hand, an excessively large percentage of steel is used,
the concrete crushes on the compression side before the tensile
steel yields. To avoid either of these undesirable characteris-
tics and to ensure ductile response, reinforced concrete flexur-
al members with tensile reinforcing only should be proportioned
so that (Ref. 5-4)
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55,463 Bj £a
P < §7,000 * [f‘ (5-6)
Y Y
where
p = tensile reinforcing steel ratio = As/bd
AS = cross sectional area of tensile steel
b = width of concrete member
d = effective depth of concrete member (Distance from
the compression outer fiber to the centroid of the
tensile reinforcing steel)
fé = static unconfined compressive strength of concrete
fy = static yield strength of steel
Bl = ,85 for fé < 4,000 psi and is reduced at a rate of

0.95 for each 1,000 psi increase in fé over 4,000 psi.

The ultimate moment capacity of a rectangular
member with tensile reinforcing only and subjected to bending
only is given by

= 2 -— ' -
Mp = pfg,bd (1 0.59pf4,/f3.) (5-7)

where féc is the dynamic compressive strength of the concrete

and all other terms are as previously defined.

The addition of compression steel has little ef-
fect on the ultimate moment capacity of underreinforced members
(those meeting the criteria of Eg. 5-6). It is recommended that
the member be proportioned according to Eg. 5-7 and that for small
shiclds, 25% of the rebars be conservatively provided on the opposite

face for rebound resistance but that no increase in moment capacity
be claimed due to the presence of reinforcing steel in the compression

area. If there is found to be some overriding reason to take account
of the effects of compression reinforcement, Ref. 5-4 or 5-5 should
be consulted. If the required rebound resistance is determined

by dynamic analysis, the reinforcing steel in the opposite face
should provide this resistance. See Section 5.5.5 (to be added)

for rebound calculations.
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It is often necessary to calculate the moment of
inertia of a reinforced concrete element. Reference 5-6 recom-
ments that the moment of inertia be taken equal to the average
of that for the cracked and uncracked transformed cross sec-
tions. For rectangular cross sections, Ref. 5-6 recommends the
approximation

3
I, = llg— (5.5p + 0.083) (5-8)

b. Shear

Shear failures are generally brittle in nature
with little advance warning of distress in the member. 1In order
to assure ductile behavior of reinforced concrete members, it is
necessary that members be designed against shear failure by follow-
ing recommended ductility ratios in Table 4-3. The static compres-
sive allowable stress should be used in . expressions for the shear

strength of reinforced concrete members.

There are two modes of shear failure, direct shear
and diagonal tension. The direct shear mode of failure is ‘
characterized by the rapid propagation of a nearly vertical
crack through the depth of the member in the region of the
support. Horizontal reinforcement inhibits the formation and
progagation of such cracks. Direct shear failures can occur
in members properly proportioned for suppressive shielding appli-
cations. Direct shear should always be investigated. The direct
shear stress that can be taken by the concrete is given by
(Ref. 5-5)

Ve = Bg = 0.18fé psi (5-9)

where Vd is the total shear at the support in pounds and the
other terms are as previously defined. Equation 5-9 may be used
for either conventional (span/depth > 5) or deep (span/depth < 5)
members.

The diagonal tension failure mode is character-
ized by diagonal cracks which propagate through the member from (
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a point near the tensile steel toward the compression face.
When the crack has penetrated to a point where the remaining
compression zone of the concrete is insufficient to sustain the

bending stresses, the concrete crushes and the member fails.

The critical section for diagonal tension in
conventional members is taken at a distance d (the effective
depth of the member) from the support. The allowable shear

stress on the concrete is given by (Ref. 5-7)

= [ -
Ve (l.9/fc + 2500pdvc /Mc ) (5-10)
where
Vc = total shear on critical section (typically at dis-
tance d from the support)
Mc = moment at the critical section

The value of the term ch/Mc in Eq. 5-10 shall not be taken
greater than 1.0. Reference 5-7 states that the shearing
stress obtained from Eg. 5-10 should not exceed 3.5/?;. Re-
ference 5-5 recommends a more conservative value of 2.28/?2
A review of test data reported in Ref 5-8 indicates that the

value of 2.28/?2 is perhaps overly conservative.

The added shear capacity contributed by shear

reinforcing is given by (Ref. 5-9)

Avfd
v =4 —Y9¥ (5-11)
s s
where
s = spacing of vertical web reinforcing
A = total cross section area of web reinforcing over

v

distance s
The vertical web reinforcing ratio is defined as the ratio
of the area of the vertical web reinforcing to the gross
horizontal area, bs. Equation 5-11 assumes the web reinforc-
ing is placed perpendicular to the longitudinal axis of the
member. Reference 5-7 states that Vs/bd should not exceed
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8¢fé psi. The total shear capacity is then given by

V. =V_ +V (5~12)

where Vc equals the allowable concrete shear stress from Eq.
5-10, Vo times bd. The shear stress calculated from Eq. 5-12,
i.e., Vu/bd, should not exceed ll.S/fé psi. Reference 5-5

recommends a more conservative value of 10/?2.

The critical section for diagonal tension
(shear) in deep members is assumed to occur at a distance
0.15L from the support for uniformly loaded members, one-half
the distance between a concentrated load and the support for
concentrated loads, but not over a distance 4 from the sup-
port for either case. The allowable shear stress on the con-

crete for deep members is given by (Ref. 5-8)
Ve = (3.5 - 2.5M_ /V, d)(l.s/fg + 2500pdV_ /M_ )  (5-13)

with the provisions that

1.0 < (3.5 - 2.5M_ /V_d) < 2.5

and

v_ < 6V}
c — c

with all terms as previously defined.

When web reinforcing is needed to supply ad-
ditional shear capacity for deep members, it is recommended
that such reinforcement be provided by an orthogonal vertical
and horizontal system of bars. The shear capacity contributed

by such a system is given by (Ref. 5-7)

A A
= A L —vH -L -
vy = fdyd [125 (1 + d.) + I2s (11 d)] (5-14)
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where

Av = total cross section area of vertical web rein-
forcing over distance s

S = horizontal spacing of vertical web reinforcing

L = gpan of member

AVH = total cross section area of horizontal web re-
inforcing over distance Sy

Sy = vertical spacing of horizontal web reinforcing

The total shear stress, i.e., Vu/bd with Vu from Eq. 5-12, to
be allowed on a deep member shall be limited to lO/fé psi.

The web reinforcing systems described above
are the conventional methods of providing shear reinforcement
for reinforced concrete members. Where shear reinforcement
is required for conventional members, the amount of such rein-
forcement provided shall be

A > i?bs
v dy

and s shall not exceed d/2 or 24 inches. Where required in deep

members, the area of shear reinforcement AV perpendicular to
the main reinforcement shall be not less than 0.0015bs and s
shall not exceed d4/5 or 18 inches. The area of shear re-

inforcement AVH parallel to the main reinforcement shall not

be less than, 0.0025bsH and s., shall not exceed d/3 or 18 inches.

H
The situation may arise where it is desirable

to utilize a reinforced concrete element where the loading

conditions are such that the allowable total shear values stated

above (Vu/bd < 11.5/?2 or <10 /fg) are exceeded. In such a case,

increase the depth of the member.

w
i

17
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c. Bond and Anchorage

All modes of failure of reinforced concrete
elements are closely coupled to and are, in fact, inseparable
from a bond mode of failure. If a bond failure is not pre-
vented, the bars will not serve their function in the other

modes of behavior considered.

The tension or compression forces in the re-
inforcement at each section must be developed on each side of
that section by an adequate embedment length or end anchorage
or a combination of the two. If no mechanical end anchorage
is provided, the tension or compression forces in the rein-
forcing must be resisted by shear-type bond stresses dis-
tributed over the contact area between the bars and the con-
crete. Bars without deformations shall not be used. The
projecting ribs of deformed bars bear against the surrounding
concrete and provide greatly increased bond strength over that

of plain bars.

Reference 5-4 states that the ultimate resist-
ing bond force, in force per unit length of bar, is largely
independent of bar size or perimeter. Since the force in the
bar causing bond failure increases with its area, bond is a more
serious problem with the larger bars. The critical sections for
development of reinforcement in flexural members are generally
at points of maximum moment gradient. The required development

length of deformed bars in tension is given by (Ref. 5-7)

Ly = 0.04Afdy//fé

but not less than (5-15)

0.0004Dfdy

where LD is in inches, A is the cross section area of an individ-
ual bar in square inches and D is the diameter of the bar in
inches. If the reinforcement is placed horizontally in the top
of a member with more than 12 inches of concrete below it, the
values obtained from Eqg. 5-15 are multiplied by 1l.4. For
reinforcement whose fdY is greater than 60,000 psi, the values

18

(67]
[
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obtained from Eg. 5-15 are multiplied by the factor LZ—(G0,000/
fdyﬂ. Equation 5-15 is limited to #11 reinforcing bars and
smailer. Bars larger in diameter than #11 are not recommended
for suppressive shielding applications.
The development length for bars in compression is

given by

= t -

LD 0.O2fdyD//fc (5-16)

but not less than

0.0003fdyD or 8 inches

Additional guidance on development of bond strength is presented
in Ref. 5-7.

d. Axial Compression Loads

There are no currently approved suppressive
shielding applications which employ reinforced concrete columns.
As discussed previously for steel, such columns properly propor-
tioned for the outward blast loads would almost assuredly be
satisfactory for the normal vertical static service loads and
rebound loads. The adequacy is readily verified by procedures

presented in Ref. 5-7.

5.3.4 Cylinders

The cylindrical pressure vessel is not normally used
for suppressive shielding applications. Although Shield Groups
1, 2 and 3 are cylindrical in shape, they are an assemblage of
beam, ring and plate elements. However, the equations for de-
sign or analysis of cylindrical pressure vessels can be applied
to pipelines, ductwork, spheres and steel hoops and are, there-
fore, of interest for suppressive shield applications. It is
also possible that the cylinder might be adapted to some future
suppressive shielding application. In suppressive shield appli-
cations, the cylinder would be subjected to large internal dy-
namic pressure loads and zero or near zero external loads. The

structural material will be responding primarily in tension, and
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buckling and moment loads, which are so important for cylinders
subjected to external load, will be insignificant except in the
vicinity of the end caps. Stresses in the vicinity of the junc-
ture between the end caps and the cylinder walls are a function
of the relative stiffnesses of these elements. Their prediction

is complex and cannot be treated here.

The cylinder shown in Fig. 5-4 can be considered
thin walled, if its wall thickness is equal to or less than one-
tenth the internal radius. The average stress calculated for
the wall thickness is a good approximation of the maximum stress
in the wall. The force P acting on the end cap and base plate
is the product of the internal pressure and the internal cross

sectional area
P=px WRZ

where p is the internal pressure and R is the internal radius.
The longitudinal stress in the cylinder wall depicted in Fig.
5-4 can be found from

g = P/AL011 = 5% (5-17)

The radius to the mid section of the wall of thickness t can be

(Thin wall) o

taken equal to the internal radius with little error for thin

wall cylinders.

The total force P on the base plate is the same
as on the hemispherical cap. This force could be divided equal-
ly among the bolts that are shown or distributed around the cir-
cumference for welding when determining the end cap connection

requirements.

The cylinder hoop forces are also depicted in
Fig. 5-4. For the unit width strip shown,

F = 2Rp = 2H = 20,t
and the hoop stress
(Thin Wall) o = P-E- (5-18)

with all terms as previously defined.



a.

)

c. Hemispherical Cap

HNDM-1110-1-2

lem
ko

2R

— e 7

side View of Structure

“‘J

b. Hoop Section

d. Base Plate
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In cases where the cylinder wall thickness ex-
ceeds one-tenth of the internal radius, expressions for stress
in thick wall cylinders should be used. The maximum hoop stress
in a thick wall cylinder subjected to internal pressure only
expressed as a ratio of the thin wall stress and a function of
the outside and inside radii is shown in Fig. 5-5. Expres-
sions from Ref. 5-10 for the maximum hoop, radial and longi-
tudinal stresses in thick walled cylinders subjected to inter-

nal pressure only are summarized below.

| p(r2 + r%)
(Thick Wall) oy = 5 5 (5-19)
R~ - R,
o i
(Thick wWall) o, =P (5-20)
pRZ
(Thick Wall) Oy = 5 ———3 (5-21)
R” - R,
o i

where Ri is the inside radius, Ro is the outside radius of the
thick wall cylinder and the other terms are as previously
defined.

The stresses given by Egs. 5-19 and 5-20 are
maximum values and occur at the inside wall of the cylinder.
The maximum value that a radial stressAmay attain is equal to
the internal pressure. The hoop stress is normally larger than
the radial stress for the conditions of interest in suppressive

shielding.

The longitudinal stress, Eq. 5-21, can be
assumed to be uniformly distributed on any transverse wall sec-
tion which is not close to a capped end. Near a capped end,
the influence of the cap will cause nonuniformity in the stress
distribution. It will usually be found that values of o, are
small relative to those of op and C

Equations 5-17 through 5-21 can be used for de-
sign or analysis of suppressive shields by taking the allowable

stress equal to fdy'
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5.3.5 Spheres

Spherical chambers are used for some suppressive
shield applications where the fragment hazards are minimal.
Equations 5-17 and 5-21 can be used for calculating the maxi-
mum stresses in thin and thick wall spheres, respectively,
subjected to an internal pressure only. The maximum static
resistance of a spherical chamber would be obtained by taking
the calculated stress equal to fdy'

5.3.6 Natu;al Frequencies of Common Systems

Calculating natural frequencies is one of the im-
portant steps in the analysis of most systems. The expres-
sions given in this section can be used to calculate the cir-
cular natural frequencies or period of vibration of various
types of structural elements which remain elastic. The cir-
cular natural frequency and period of vibration of an element
are related by

_2m -
TN = oy (5-22)
where TN is the period of vibration of the element in seconds
and w,, is the circular natural frequency in radians per sec-

N
ond. If the period of vibration and load duration are known,

the equations and charts of paragraph 5.5 and Appendix B can be
used to obtain the maximum response of the system.

Figure 5-6 presents solutions for the circular
natural frequency of various types of beams or one-way slabs.
In Fig. 5-6(a), the mass of the beam is assumed to be very
small compared to that of the supported load. The solutions
given in Fig. 5~6(b) include consideration of both the mass
of the beam and the supported mass. They do not include con-
sideration of the stiffness added by attached plates or boxes.
The importance of added stiffness depends on how much is added
and over what portion of the span it extends. No general
solution can be given here.
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’Figure 5-7 presents solutions for the natural
frequencies of circular and squére slabs with various edge condi-
tions. Figure 5-8 presents solutions for the natural frequen-
cies of beams or one-way slabs with uniformly distributed mass

and various support conditions.

The solutions presented in Figs. 5-6 through 5-8
are for the lowest (fundamental) mode of vibration. They do
not include consideration of the effects of rotary motion and
shearing forces on natural frequencies. These effects are small
except for beams with small span to depth ratios, i.e., short,
deep beams, or beams vibrating in higher mode shapes. Reference
5-11 presents guidance regarding adjustment of natural frequencies

in those cases where these effects might be considered important.

Some cylindrical suppressive shields are strength-
ened with circumferential steel hoops. "Under the radial loads
imposed by the longitudinal beam columns they support, these steel
hoops will respond in the extensional mode (all segments move
radially together - in or out). The frequency of vibration of a
steel hoop in this mode is given by

vy T8 (5-23)
mR :
where
A = cross section area of beam, in2
m = mass per unit length of beam, lb-—secz/in2
R = radius to center of beam, inches

The fundamental mode of vibration of a sphere
would consist of simultaneous radial motion of all points on its
surface. From Ref. 5-12, the natural period of vibration in
the fundamental mode is given by

7
T, = 2n‘/ﬂé_é%:21 (5-24)
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Et2
w = Bef—7 5" rad/sec

pa (1-v.)

- 2
E = Young's Modulus, lb/in
t = Thickness of Plate, inches
¢ = Mass Density, lb~sec2/in4
a = Diameter of Circular Plate or Side of Square Plate, inches
v = Poisson's Ratio
Shape Value of B
of Diagram Edge Conditions
Plate
/
CIRCULAR Clamped at Edge 11.84
/
CIRCULAR Simply Supported
at Edge 5.90
a
One Edge Clamped-
ARE .
SQU AE Three Edges Free 1.0l
L1 LLl
/ Iall ;
SQUARE Aa ; All Edges Clamped 10.40
7777777
2 -
SQUARE / Two Edges Clamped 5.01
‘ Ay a Two Edges Free
777777
ATa One Edge Clamped-
SQUARE Z a k Three Edges Simply 6.83
’ “A i Supported
A - Two Edges Clamped-
SQUARE 1= ? Two Edges Simply 8.37
/ 1 Supported
IRKAN
AYAY4
3 Q
SQUARE dta k¥ All Edges
2 K Simply Supported 5.70
N

Figure 5-7.

Clamped M _
Edges g__“*L;’—g “n T

Simply A>—_£:£m

3
Supported w_ = 4.09 I Et

Edges VMaz (1-v) (3+v)

Frundamental Frecuencies of Thin Flat Plates
of Uniform Thickness (Rei. 5-11)
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where
a = radius of sphere, inches
p = mass density of sphere material, lb—secz/in4
v = Poisson's ratio for sphere material

E = modulus of elasticity for spheré material, lb/in2

5.4 EQUIVALENT SINGLE DEGREE OF FREEDOM SYSTEMS
5.4.1 General

A rigorous dynamic analysis is feasible only for
relatively simple structures where the loading and resistance
functions can be expressed in simple mathematical terms. Al-
though numerical analysis techniques are much more flexible,
they also become tedious for more than a few degrees of free-
dom. Most real structures with distributed mass theoretically
have an infinite number of degrees of freedom. For practical
design purposes, it is necessary to develop approximate

methods which allow rapid analysis of complex structures with
reasonable accuracy. Fortunately, it is possible to reduce
many common structural elements to an equivalent single degree
of freedom system which can then be analyzed &ith accuracy
sufficient for most engineering purposes. In view of the un-
certainties in loads and material properties encountered in
suppressive shield design, more complex analytical techniques
are often not justified. The method used herein for reducing
distributed mass systems to equivalent single degree of free-
dom systems is taken from Ref. 5-13. k

Figure 5-9 shows a fixed end beam with a single
degree of freedom replacement system. In order to define the
equivalent single degree of freedom system, it is necessary to
to determine the parameters Feq(t), Meq' Keq and Xeq’ The
usual approach is to define the system as one in which the

equivalent displacement, velocity and acceleration are equal
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to that at some significant point in the actual system, e.g.,
the midspan of a beam. Stresses and forces in the equivalent
system are not directly equivalent to those in the real system,
but, if the deflections are known, the stresses in the real
system can be calculated. It is also necessary to define
equivalent resistance and forcing functions. The equivalent

forcing function should have the same time dependence as the
real load.

/
p(t)
AT T I T ITI 3

/ )

L
(a)

l eq

€q

NN N ONNS

"

(t)

(b)

Figure 5-9. Equivalent Single Degree of Freedom System

The constants of the equivalent system are evalu-
ated on the basis of an assumed deformed shape of the actual
structure. This shape is usually taken as that resulting
from the static application of the dynamic loads. This ap-
proach is not quite the same as that of using the first mode
shape, but it yields more accurate results for many systems,
especially for stress computations. These deflected shapes are

more easily determined and described by simple mathematical
functions than are mode shapes.
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5.4.2 Transformation Factors for Beams and Slabs

It is convenient to develop transformation factors
which convert the real system into the equivalent system.
When the load, mass, resistance and stiffness of the real
structure are multiplied by the corresponding transformation
factors, these parameters are obtained for the equivalent
single degree of freedom system. The mass transformation fac-
tor is defined to be

M

Ky = Mi:- (5-25)
where
Mt = total mass of the real structure
Meq = mass of the equivalent single degree of freedom

system

The load transformation factor is defined to be

KL = 2%? (5-26)
where
Ft = total force on the real structure
Feq = force on the equivalent single degree of freedom

system

Since the maximum resistance is the total load
having the given distribution which the structure can support
statically and the stiffness is equal to the total load of the
same distribution required to cause a unit displacement at the

significant point, it follows that the resistance factor, K

RI
must always equal the load factor, KL. Then
Rmeg
KR = Rm = FL (5-27)
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and
K

= -89 = -
Kz g K. (5-28)

where Rm and K are the actual and R and Keq are the equiva-

lent resistances and spring constanﬁz? respectively.
Transformation factors have been worked out for

a number of common types of structural elements and support

conditions. Tables 5-2 and 5-3 give factors for beams and

one-way slabs, Tables 5-4 through 5-7 give factors for two-

way slabs. Table 5-8 presents factors for circular slabs. The

tables also include a load-mass factor which is defined to be

the ratio of the mass and load-factors, i.e.,
K = — (5-29)

The ratio can be used to define the equations of

motion for the equivalent system

KLMMtX + KX

Ft(t) (elastic region) (5-30)

KLMMtx + R Ft(t) (plastic region) (5~31)

The natural frequency of both the real and idealized systems

is
K 1/2 1/2
[ eq] X (5-32)
w = ——— 3 -
N Meq KLMMt
and the natural period is
Kem'le 12 |
T = 2 (5-33)
n K

The maximum resistances and spring stiffnesses
presented in Table 5-2 are those for the real system and are
the conventional expressions for these quantities. They are
given in terms of the total load on the system and, when multi-

plied by the load factor, they become the corresponding
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guantities for the equivalent system. Maximum resistances are
expressed in terms of the fully plastic moment capacity, MP' of
the element and are based on the assumption that the member is
proportioned so that a shear failure is prevented. Expressions
for the fully plastic moment capacity of steel and reinforced
concrete members are given in paragraph 5.3. The resistance-
displacement function is a bilinear one similar to the elastic-
plastic one shown in Fig. 5-1. Note that two mass factors are
given for beams with concentrated loads. The concentrated mass
factor is applied to those concentrated masses which occur at
the point of application of the loads. The total eqﬁivalent
mass would be the sum of the equivalent contributions from con-

centrated and distributed masses.

The maximum resistances and spring constants pre-
sented in Table 5-3 are for beams or one-way slabs with one
end fixed and the other simply supported or with both ends
fixed. In these cases, the element goes through three ranges
of response since the fully plastic condition does not coin-
cide with the formation of a plastic hinge at the supports.
The resistance-displacement function for these elements is
similar to that shown in Fig. 5-2. An exception is the fixed
end beam with a concentrated load at midspan. For this case,
the moments at midspan and the supports are equal and there
is no elastic-plastic range. The maximum resistances given
in Table 5-3 are those which occur at the upper limit of each
range. In addition to the spring constant for each range,
an effective spring constant covering all ranges is given.
This effective spring constant allows the establishmen£ of a
bilinear resistance displacement function for use with the
expressions given in paragraph 5.5. If plastic deformation
is allowed (the normal case for most suppressive shield ele-
ments), the plastic Keq is used. An equivalent elastic limit
displacement can be obtained from
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Rmeq |
X = -"I'{'-‘—— (5“34)

eq eq

As in the case of Table 5-2, the maximum resistance and stiff-
nesses are in terms of the total load on the element. They
must be multiplied by the appropriate load factor to obtain
corresponding gquantities for the equivalent system. The mass
factors in Table 5-3 are used in the same manner as those in
Table 5-2.

Maximum resistances, spring stiffnesses and trans-
formation factors for two-way rectangular slabs with various
edge conditions are presented in Tables 5-4 through 5-7. These
guantities are also obtained from assumed deflected shapes of
the slabs. In the elastic region, the deflected shapes are
based upon approximations to classical plate theory. In the
plastic region, they are based upon yield line theory. The
assumed vield lines are as shown in Fig. 5-10. As in the case
of the beams and slabs with fixed ends, the resistance-dis-
placement function for two-way slabs can be divided into three
ranges; elastic, elastic-plastic, and plastic. Reference 5-13
neglects the elastic-plastic range for simply supported two-way
slabs. The elastic range for simply supported two-way slabs is
assumed to exist until the development of plastic moment along
the assumed yield lines. The elastic range for fixed-end, two-
way slabs is assumed to exist until the support moment along
the long edge of rectangular slabs, or all edges of square
slabs, reaches the plastic resistance value. This is the be-
ginning of the elastic-plastic range which is assumed to hold
up to the plastic range. The plastic range is initiated with
the development of plastic moment along each of the assumed
yield lines. For two-way slabs, simply supported on two
opposite sides and fixed on the other two sides, the elastic
range is assumed to exist until the development of plastic
moments along the fixed edges. The elastic-plastic range is
assumed to hold up to the development of full plastic moments

along all assumed yield lines. The maximum resistances given
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Yield Lines

A

{a) Sqguare Slab

Long Edge '
. b = Long Spanl//////i: //,_short Edge
vield />\ /
Lines ‘7/ \
|

(b) Rectangular Slab

a = Short Span

Figure 5-10. Assumed Yield Lines for Two-Way Slabs
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in Tables 5-4 through 5~7 represent the upper limits of each
range. Spring stiffnesses are given for each range of response.
Maximum resistances and spring stiffnesses are given in terms

of the total load on the slab and must be multiplied by the load
factor to obtain the corresponding quantities for the equivalent
single degree of freedom system. These transformed guantities
can be used to construct a resistance displacement diagram
similar to that shown in Fig. 5-2. An effective spring stiffness
over the entire displacement range can be calculated using the
procedure described earlier in paragraph 5.2. A reasonable ap-
proximation cah be obtained by visual inspection of the tri-

linear plot.

Table 5-8 presents transformation factors for cir-
cular slabs. These factors were taken from Ref. 5-9 and were

derived using the procedures outlined in Ref. 5-13.

As in the case of beams and one-way slabs, the max-
imum resistances for two-way slabs assume that the slabs are

proportioned so that they do not fail in shear.

The notation used in Tables 5-2 through 5-8 is as
follows.

MP = ultimate bending moment capacity

Mpes = total ultimate positive bending moment capacity
along midspan section parallel to short edge, a

Mbe = total ultimate positive bending moment capacity
along midspan section parallel to long edge, b
MPsa = total ultimate negative moment capacity along

short edge, a

MPsb = total ultimate negative moment capacity along

long edge, b

MPsa = ultimate negative bending moment capacity per
unit width at center of edge a in direction of
long span, b
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MPsb = ultimate negative bending moment capacity per
unit width at center of edge b in direction of

short span, a

MPc = ultimate positive bending moment capacity per
unit width at center of circular slab

My, = ultimate negative bending moment capacity per

unit width at edge of circular slab or ultimate

bending moment capacity of beam at support

MPm = ultimate bending moment capacity of beam at mid-
span.
I = moment of inertia of beam or moment of inertia

of unit width of slab

I = average of gross and cracked moment of inertia
per unit width of concrete slabs (for short span
in two-way slabs) or moment of inertia of plate

per unit width
= modulus of elasticity

v = dynamic reaction at ends of symmetric beams or
simple cantilever

Vl = dynamic reaction at hinged end of non-symmetric
beams

V2 = dynamic reaction at fixed end of non-symmetric
beams

VA = total dynamic reaction along one short edge

= total dynamic reaction along one long edge

5.4.3 Dynamic Reactions

It is important to recognize that the dynamic re-
actions of the real structural element have no direct counter-
part in ‘the equivalent single degree of freedom system (Ref.
5-6). It is important to obtain some estimate of reactions
since they are always related to the maximum shear in the
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element, and they are also necessary for the design of the sup-
porting structures.

Expressions for the reactions may be obtained by
considerihg the dynamic equilibrium of the complete element.
The dynamic equilibrium of the element includes consideration
of loads acting on the element and inertia forces which are
assumed to be proportional to the deflected shape. By assum-
ing a deflected shape, the reactions can be defined in terms
of the loads acting on the element and its resistance. Tables
5-2 through 5-8 include factors for caiculating the dynamic
reactions of the various structural elements. The general
form of the expression is

vV = ch + C2R (5-35)

where

\ = the dynamic reaction at one end or edge of the
element, except in the case of circular slabs
where V represents the total reaction at the
supports

Cl,C2 = coefficients obtained from the tables
F = total force applied to the element
R = resistance of the element

In most cases, both F and R are functions of time. In the
elastic range, the maximum resistance occurs at maximum dis-
placement, and the loading and resistance at the time of
maximum displacement are used in Eq. 5~35 with the appropri-
ate coefficients to obtain the dynamic reactions. 1In the
plastic range, as the load F decreases with time, the maximum
reactions occur when the displacement first reaches its yield
value and the resistance is equal to R . For these cases, the
time to reach yield displacement can be obtained by numerical
integration of the equation of motion or by a slightly conserva-
tive method discussed in the next paragraph. The loading at
this time and R are used in Eg. 5-35 to obtain the dynamic
reactions.
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In those cases where the quasi-static load does
ndt decrease significantly within a period of time approximately
equal to the period of the structure and the peak reflected
pressure pulse whose time of duration is much less than the
period is neglected, the procedure is simplified somewhat.
tor both the elastic and plastic regions, the loading con-
tribution is taken equal to the peak quasi-static load
and the resistance is taken equal to Rm. The latter
approach can also be used to obtain a conservative estimate
of reactions for a decaying pulse. For rapidly decaying
loads, the results can be overly conservative. Note.that
since F and R are expressed in terms of the total load and
resistance, the reactions obtained from Eg. 5-35 represent
the total at the ends of the beam or the total for an edge of
the slab.

5.5 DYNAMIC RESPONSE OF STRUCTURAL SYSTEMS

5.5.1 Introduction

Most real structures are very complex in their
behavior even under static loads, and their response to dy-
namic loads includes additional complications due to various
combinations of elastic and inelastic vibrational modes.

The usual approach to determining the dynamic response of a
structure or structural element to some specific loading is
to first model or represent the structure as a system of
finite structural elements and masses connected together at

a discrete number of nodal points. If the force-displacement
relationships are known for the individual elements, various
methods of structural analysis can be used to study the be-
havior of the assembled structure. Most structures are made
up of beams, girders, columns, slabs, plates and shells, with
each of these elements having distributed mass and stiffness.
If certain assumptions are made regarding stiffness of con-
nections, lumping of masses, stiffnesses and applied loads,
it is possible to replace these structures and structural
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elements with simpler equivalent systems. 1In general, the more
complex the structure, the greater the number of individual ele-

ments required to accurately describe its response.

Methods of analysis for complex multiple degree of
freedom systems are not considered in this handbook, except for
those systems which can be represented by an equivalent single
degree of freedom system. Approximate methods of analysis which
reduce some common types of multiple degree of freedom systems
to equivalent single degree of freedom systems were presented in
paragraph 5.4. If the system is assumed to be vibrating in its
fundamental mode only, its natural frequency can be computed us-
ing expressions from paragraph 5.3.6 and the system analyzed as
a single degree of freedom system. Most suppressive shield
structures consist of combinations of structural elements; how-
ever, it can be assumed in many cases that individual elements
act independently of each other. For example, the peak response
of a beam may be considered independent of the response of a
girder which supports it. In this case, the beam and girder
system can be analyzed independently as two uncoupled single de-
gree of freedom systems. An approximate rule is that two such
elements may be treated separately if their periods of vibration

vary by a factor of 2 or more.

If the periods of vibration of the two elements are
not sufficiently different, a multiple degree of freedom analy-
sis should be made. The numerical integration technique which
is applied to single degree of freedom systems in paragraph
5.5.3 can also be used for analysis of multiple degree of free-
dom systems. The calculations for systems with greater than two
or three degrees of freedom become lengthy and tedious and
should be programmed for high speed electronic computers. The
elastic response of multiple degree of freedom systems is readi-
ly obtained using structural analysis programs such as STRUDL/
DYNAL (MCAUTO), NASTRAN (NASA), STARDYNE (Mechanics Researéh,
Inc.), and SAP IV (Univ. of Calif. at Berkeley). MARC-CDC (Con-
trol Data Corp.) and ANSYS (Swanson Analysis Systems, Inc.) are
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general purpose finite element programs for the nonlinear analy~-

sis of structures with large displacements.

5.5.2 Energy Methods

Energy and momentum considerations can be used to
develop general solutioﬁs for single degree of freedom systems.
Assuming an elastic-plastic resistance function such as that
shown in Fig. 5-1, solutions can be obtained for load cases
which approximate those generated within suppressive shields.
The first corresponds to the situation where the load. rises
suddenly to ité maximum value and remains constant for all
displacements of the structural element. This is the step
pulse or long duration loading shown in Fig. 5-11. The second
is the case where all of the force is applied as an impulse
before the structural element can displace appreciably.

F(t) R

B R
m
% |
X X X
m e m
External Work ’ Internal Energy

Figure 5-11. External Work and Internal Energy for Long
Duration Load

In the first case, the external work done on the
system is equal to the applied force times the displacement of
its point of application in the direction of the force. At
maximum displacement, the velocity of the mass is zero and the .
external work must be equal to the strain energy stored in the
system. The external work and the internal energy are repre-
sented by the shaded areas of the diagrams shown in Fig. 5-11.
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Equating the two areas

BX = RX - —=% (5-36)
m m
the required maximum resistance is given by

= p|_2¥_ -
R, = B[ZH_J_] (5-37)

Rearranging terms in Eg. 5-37, the maximum displacement of the
system is obtained from

>

1

= 0 = 4 -
H —-Xe 2[1_—-_5_] (5-38)
R
m

Equation 5-37 is applicable only to those problems where u > 1.
It should also be noted from Eq. 5-38 that Rm must be greater
than the peak load, B. If R < By the internal energy will
never equal the external work done by the step pulse.

In the case of the impulsive load shown in Fig.
5-12, the total impulse applied to the system is equal to the
area under the load-time function, i.e.,

i = — (5-39)

Figure 5-12. Impulsive Loading
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Assuming the system is initially at rest, this impulse im-

parts an instantaneous velocity to the mass of

- i -
X =y (5-40)
and the kinetic energy of the mass is
©\ 2 .2
_MX)T _ 1 _
K.E. = 5 = ™M (5-41)

As in the case of the long duration load, this
kinetic energy will be converted to strain energy at the time

of maximum displacement of the system. Thus

2 .
Bt R X
1 o - _ me e
Eﬁ[z] | _Rmxm 5 (5-42)
Substituting
2
wo K - m|iy
w2 Xe 27
N
and
X
u o= _m
Xe

into Eg. 5-42, the required maximum resistance is given by

Tt
R =B o

- ) (5-43)
TNfzu-l

Making the substitution

and

21
N wN
results in a more general form of Eq. 5-43.
' iw
R = __ N _ (5-44)
vY2u-1
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Maximum response of the system is obtained from

1 BﬂtO 2
m N f

~

u = %—[(;:)2 + 1] | (5-46)

Equations 5-43 through 5-46 are also applicable only to problems

or

where pu > 1. 1In order for this condition to occur, the ratios

must be greater than or equai to 1. Equations 5-37 and 5-38
are most correct for larger values of td/TN and Egs. 5-43
through 5-46 for smaller values. Large and small have been
somewhat arbitrarily défined to be ratios of 10 and 0.2

respectively. Reference 5-14 recommends the expression

B Ty 1- 51—
R = weo TAu-l ot 5 (5-47)
m °© 1+ 0.7 %—15-

O

as applicable over the whole range of possible values of to/TN.
Equation 5-47 is reported to be in error by less than 8.4 per-
cent over a range of values of to from 0 to infinity and of u
from 1 to infinity. At large values of to/Tn, it reduces to Eq.
5-37; at small values of to/Tn, it becomes Eq. 5-43.

The methods of analyses presented up to this point
can only be applied to loadings which can be adequately repre-
sented by a simple triangular or step function. In some
instances, a multiple triangle approximation of the actual
loading will yield more accurate results. Figure 5-13 shows
a three-triangle approximation of a loading funcfion. Two,

four or n-triangle approximations are also possible. A

5-55
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reasonable approximation to the response of a single degree of
freedom system to this loading can be obtained by treating each
triangle as a partial load acting alone. For the three triangle
approximation shown in Fig. 5-13, the relationship is

ClB/Rm C2B/Rm C3B/Rm

+ + =1 (5-48)
Fy Fa Fs

where Fl' F2, and F3 are the values of ClB/Rm, CZB/Rm and C3B/Rm
for given values of u and ratios of duration of load to period
tl/TN, t2/TN and t3/TN, respectively. Equations 5-37, 5-43,
5-44 or 5-47, as appropriate, can be used to obtain Fl, F2 and
F3. Identical values of u and TN are used for each partial load
computation. The general relationship is

C_B/R
—EF——E =1 (5-49)
E : N ,

Load
B
C
lB
C2B |
CBB | Time
1 1 — —
0 tl t2 t3

Figure 5-13. Multiple Triangle Approximation of Loading Function

Many airblast loadings of interest can be adequately
represented by a two triangle approximation. Equations 5-47 and
5-48 can be combined to obtain a general solution for this case.

ClB CZB
R R
m — + L — =1 (5-50)

T l - =— T 1l - >0
_N 2u-1 + 2y N Y2pu-1 + U
ﬂtl TN t2 TN
1+0.7— 1+o.7E—
1 2



